參考價(jià)格
面議型號(hào)
品牌
產(chǎn)地
荷蘭樣本
暫無看了Lumicks超分辨單分子動(dòng)力分析儀(熒光光鑷)-C-Trap的用戶又看了
虛擬號(hào)將在 180 秒后失效
使用微信掃碼撥號(hào)
荷蘭Lumicks C-Trap
超分辨單分子動(dòng)力分析儀(熒光光鑷)--C-Trap,是世界上首款將光鑷、共聚焦或 STED 超分辨顯微鏡和微流控系統(tǒng)結(jié)合的單分子操控儀器。C-Trap通過高度聚焦激光束產(chǎn)生的力來操作納米/微米顆粒,實(shí)現(xiàn)了對(duì)生物分子的單分子操縱,并且結(jié)合力學(xué)檢測(cè)系統(tǒng)和共聚焦或 STED 超分辨顯微鏡,可以定位反應(yīng)的結(jié)合位點(diǎn),并實(shí)時(shí)監(jiān)測(cè)生物分子的單分子動(dòng)力學(xué)特性。C-Trap可以揭示大量分子相互作用的機(jī)制,包括:DNA的修復(fù)、DNA的復(fù)制和轉(zhuǎn)錄、核糖體的翻譯、生物分子馬達(dá)和酶、細(xì)胞膜的相互作用、DNA-DNA的相互作用、DNA發(fā)夾結(jié)構(gòu)動(dòng)力學(xué)、DNA/RNA的結(jié)構(gòu)動(dòng)力學(xué)蛋白質(zhì)的折疊(去折疊)、DNA的組織化和染色質(zhì)化、細(xì)胞的運(yùn)動(dòng)機(jī)制等信息。
Lumicks 超分辨單分子動(dòng)力分析儀技術(shù)特征:
√ 多重連續(xù)激光光阱捕獲 √ ****的剛性范圍 √ 較低的力學(xué)噪聲 √ **的3D捕獲定位 | √ 超穩(wěn)定負(fù)壓驅(qū)動(dòng)微流體 √ 自動(dòng)控制的微流控芯片 √ 高度相關(guān)的力學(xué)-熒光數(shù)據(jù)采集 | √ 多重共聚焦掃描熒光顯微鏡 √ 單光子靈敏度 √ 可升級(jí)到STED超分辨率 |
技術(shù)原理:
Lumicks超分辨單分子動(dòng)力分析儀主要由微液流控制系統(tǒng)、光鑷操縱系統(tǒng)、力學(xué)檢測(cè)系統(tǒng)以及共聚焦(超分辨率顯微鏡)成像系統(tǒng)組成。微液流控制系統(tǒng)采用分通道集成設(shè)計(jì),避免反應(yīng)體系交叉污染,確保多步驟生物反應(yīng)原位進(jìn)行;光鑷系統(tǒng)通過高度聚焦激光束產(chǎn)生的力來操作納米或微米級(jí)的介電質(zhì)顆粒,實(shí)現(xiàn)了對(duì)生物分子的單分子水平的操縱;結(jié)合力學(xué)檢測(cè)系統(tǒng)和共聚焦(超分辨率顯微鏡)成像系統(tǒng),同時(shí)從力學(xué)和光學(xué)角度,高精度定位反應(yīng)的結(jié)合位點(diǎn),實(shí)時(shí)監(jiān)測(cè)生物分子的單分子動(dòng)力學(xué)特性。
應(yīng)用領(lǐng)域:
應(yīng)用包括:利用 CTFM(Correlative Tweezers – Fluorescence Microscopy)揭示大量分子相互作用機(jī)制的詳細(xì)信息,主要包括:
DNA的修復(fù) | 中間纖維 | 核糖體的翻譯 | 細(xì)胞的運(yùn)動(dòng)機(jī)制 |
DNA的復(fù)制和轉(zhuǎn)錄 | 生物分子馬達(dá)和酶 | 細(xì)胞膜的相互作用 | DNA-DNA的相互作用 |
DNA發(fā)夾結(jié)構(gòu)動(dòng)力學(xué) | DNA/RNA的結(jié)構(gòu)動(dòng)力學(xué) | 蛋白質(zhì)的折疊(去折疊) | DNA的組織化和染色質(zhì)化 |
DNA-蛋白互作可視化 | 蛋白折疊/去折疊 |
小分子、酶活性的研究 | 細(xì)胞骨架、分子馬達(dá)動(dòng)力學(xué)的研究 |
點(diǎn)擊圖片查看應(yīng)用案例詳情:
DNA修復(fù)機(jī)制和非同源末端連接(NHEJ)單分子可視化 | 使用光鑷在單分子水平檢測(cè)蛋白折疊、去折疊和構(gòu)象動(dòng)力學(xué) |
光鑷結(jié)合STED超分辨技術(shù)揭示DNA與蛋白相互作用 | 機(jī)械力作用下DNA結(jié)構(gòu)變化的實(shí)時(shí)可視化 |
C-Trap規(guī)格參數(shù):
■ 光鑷: 檢測(cè)范圍:50μ m×50μ m×35μ m(x,y,z) 獨(dú)立光阱數(shù)目:1-4 光阱類型:持續(xù)的激光提供穩(wěn)定精確的高強(qiáng)度捕獲 力學(xué)檢測(cè)分辨率: <0.1pN @100Hz, 2μ m 聚苯乙烯微球(由生物樣品決定) **逃逸力:1000pN , 4.5μm 聚苯乙烯微球 應(yīng)力穩(wěn)定性:<1pN 光阱轉(zhuǎn)角頻率:0.1kHz-15kHz 光阱距離分辨率:<0.3nm @100Hz 小步移: <0.5nm 光阱移動(dòng)特性:所有光阱可在 x,y 平面獨(dú)立移動(dòng);1+2,3+4 可在三維空間成對(duì)移動(dòng) 運(yùn)動(dòng)微球追蹤精確度:<3nm @ 100Hz 視頻分析 | ■ 共聚焦顯微鏡: 可視范圍:50μm×35μm(x,y) 共聚焦顏色*:多可三色共用,從 488nm 到 647nm 之間的十種波長(zhǎng)中選擇 共聚焦分辨率: 衍射極限之內(nèi) STED 分辨率*:<35nm 掃描速度:線性掃描速度 200Hz 定位精度:<15nm 光斑定位精確度:<1nm 背景抑制極限:100nM @1ms 積分時(shí)間 敏感度:極低的亮度檢測(cè)極限以及單光子計(jì)數(shù)??蓹z測(cè)單個(gè) eGFP 其他值得注意的特點(diǎn):和光鑷**的結(jié)合,交互式體驗(yàn) | |
■ u-Flux 微流控: 微流控流動(dòng)系統(tǒng):負(fù)壓系統(tǒng)可以在層流環(huán)境下檢測(cè)到亞納米級(jí)別的位移 用于遠(yuǎn)程操控的自動(dòng)閥 無位移偏差 單分子測(cè)量零干擾 多達(dá)11個(gè)注射器可以接到流動(dòng)池上來實(shí)現(xiàn)復(fù)雜的多重蛋白分析 | ■ 軟件: C-Trap便捷直觀的雙屏顯示界面給您的實(shí)驗(yàn)操作帶來極大便利;您可通過手動(dòng)點(diǎn)擊操縱桿或通過簡(jiǎn)單的命令來自動(dòng)控制諸如光阱位置,平臺(tái)位置,微流體以及數(shù)據(jù)記錄等過程。以用戶為中心的軟件操作界面以及簡(jiǎn)易的操作流程使復(fù)雜的單分子實(shí)驗(yàn)過程(微球捕獲,分子的連接,隨后的操縱以及成像整個(gè)過程)在數(shù)分鐘之內(nèi)即可完成。 |
發(fā)表的文獻(xiàn)列表:
1. Naqvi M M, Avellaneda M J, Roth A, et al. Polypeptide collapse modulation and folding stimulation by GroEL-ES. bioRxiv, 2020
2. Ghosh A, Zhou H X. Fusion Speed of Biomolecular Condensates. bioRxiv, 2020
3. Alshareedah I, Moosa M M, Raju M, et al. Phase Transition of RNA-protein Complexes into Ordered Hollow Condensates. bioRxiv, 2020
4. Meijering A E C, Biebricher A S, Sitters G, et al. Imaging unlabeled proteins on DNA with super-resolution. Nucleic acids research, 2020
5. Wruck F, Tian P, Kudva R, et al. The ribosome modulates folding inside the ribosomal exit tunnel. BioRxiv, 2020
6. Kraxner J, Lorenz C, Menzel J, et al. Post-Translational Modifications Soften Intermediate Filaments. bioRxiv, 2020
7. Avellaneda M J, Koers E J, Minde D P, et al. Simultaneous sensing and imaging of individual biomolecular complexes enabled by modular DNA–protein coupling. Communications Chemistry, 2020
8. Spakman D, King G A, Peterman E J G, et al. Constructing arrays of nucleosome positioning sequences using Gibson Assembly for single-molecule studies. Scientific reports, 2020
9. Schaedel L, Lorenz C, Schepers A V, et al. Vimentin Intermediate Filaments Stabilize Dynamic Microtubules by Direct Interactions. bioRxiv, 2020
10. Avellaneda M J, Franke K B, Sunderlikova V, et al. Processive extrusion of polypeptide loops by a Hsp100 disaggregase. Nature, 2020
11. Hill C H, Napthine S, Pekarek L, et al. Structural studies of Cardiovirus 2A protein reveal the molecular basis for RNA recognition and translational control. bioRxiv, 2020
12. Qin Z, Bi L, Hou X M, et al. Human RPA activates BLM’s bidirectional DNA unwinding from a nick. Elife, 2020
13. Rill N, Mukhortava A, Lorenz S, et al. Alkyltransferase-like protein clusters scan DNA rapidly over long distances and recruit NER to alkyl-DNA lesions. Proceedings of the National Academy of Sciences, 2020
14. Mei L, de los Reyes S E, Reynolds M J, et al. Molecular mechanism for direct actin force-sensing by α-catenin. bioRxiv, 2020
15. Kucera O, Janda D, Siahaan V, et al. Anillin propels myosin-independent constriction of actin rings. bioRxiv, 2020
16. Schepers A V, Lorenz C, K?ster S. Tuning intermediate filament mechanics by variation of pH and ion charges. Nanoscale, 2020
17. Khawaja A, Itoh Y, Remes C, et al. Distinct pre-initiation steps in human mitochondrial translation. Nature Communications, 2020
18. Sorkin R, Marchetti M, Logtenberg E, et al. Synaptotagmin-1 and Doc2b Exhibit Distinct Membrane-Remodeling Mechanisms. Biophysical journal, 2020
19. Van Rosmalen M G M, Kamsma D, Biebricher A S, et al. Revealing in real-time a multistep assembly mechanism for SV40 virus-like particles. Science Advances, 2020
20. Kretzer B, Kiss B, Tordai H, et al. Single-Molecule Mechanics in Ligand Concentration Gradient. Micromachines, 2020
21. Raja A, Hadizadeh N, Candelli A. Optical tweezers and multimodality imaging: a platform for dynamic single‐molecule analysis. The FASEB Journal, 2020
22. Zananiri R, Malik O, Rudnizky S, et al. Synergy between RecBCD subunits is essential for efficient DNA unwinding. Elife, 2019
23. Leicher R, Eva J G, Lin X, et al. PRC2 bridges non-adjacent nucleosomes to establish heterochromatin. bioRxiv, 2019
24. Tafoya S, Large S J, Liu S, et al. Using a system’s equilibrium behavior to reduce its energy dissipation in nonequilibrium processes. Proceedings of the National Academy of Sciences, 2019
25. King G A, Burla F, Peterman E J G, et al. Supercoiling DNA optically. Proceedings of the National Academy of Sciences, 2019
26. Lorenz C, Forsting J, Schepers A V, et al. Lateral subunit coupling determines intermediate filament mechanics. Physical review letters, 2019
27. Kaur T, Alshareedah I, Wang W, et al. Molecular crowding tunes material states of ribonucleoprotein condensates. Biomolecules, 2019
28. Wasserman et al., Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase. Cell, 2019
29. Orsenski et al., Sites of high local frustration in DNA origami. Nature Communication, 2019
30. Newton et al., DNA stretching induces Cas9 off-target activity. Nature Structural Molecular Biology, 2019
31. Nanoletters, Real-Time Assembly of Viruslike Nucleocapsids Elucidated at the Single-Particle Level. Marchetti et al., 2019
32. Zheng et al., Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nature Communication, 2019
33. Gui et al., Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nature Communication, 2019
34. Alshareedah et al., Interplay between Short-Range Attraction and Long-Range Repulsion Controls Reentrant Liquid Condensation of Ribonucleoprotein–RNA Complexes. JACS, 2019
35. Forsting et al., Vimentin intermediate filaments undergo irreversible conformational changes during cyclic loading. Nanoletters, 2019
36. Gutierrez-Escribano et al., A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules. Science Advances, 2019
37. Sarah Koster (University of Gottingen), Viscoelastic properties of vimentin originate from nonequilibrium conformational changes. Science Advances, 2018
38. Anthony Hyman (MPI-CBG), Salt-Dependent Rheology and Surface Tension of Protein Condensates Using Optical Traps. Physical Review Letters, 2018
39. Sarah Koster (University of Gottingen), Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied Strain. Physical Review Letters, 2017
40. Ineke Brouwer,Sliding sleeves of XRCC4–XLF bridge DNA and connect fragments of broken DNA and connect fragments of broken DNA.Nature, 2016
41. Douwe Kamsma, Tuning the Music: Acoustic Force Spectroscopy (AFS) 2.0. Methods, 2016
42. Nicholas A, Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales. Biophysical Journal,2016
43. Gerrit Sitters, Acoustic force spectroscopy. Nature methods, 2015
44. Andrea Candelli, Visualization and quantification of nascent RAD51 filament formation at single-monomer resolution. PNAS, 2014
45. Iddo Heller, STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nature methods, 2014
各大用戶遍布全球
暫無數(shù)據(jù)!