參考價格
面議型號
品牌
產(chǎn)地
德國樣本
暫無看了高溫高壓光學(xué)浮區(qū)爐的用戶又看了
虛擬號將在 180 秒后失效
使用微信掃碼撥號
德國SciDre公司推出的高溫高壓光學(xué)浮區(qū)法單晶爐能夠提供2200–3000℃以上的生長溫度,晶體生長腔壓力可達300bar,甚至10-5mbar的高真空。適用于生長各種超導(dǎo)材料單晶,介電和磁性材料單晶,氧化物及金屬間化合物單晶等。 應(yīng)用領(lǐng)域 適用于生長各種超導(dǎo)材料單晶,介電和磁性材料單晶,氧化物及金屬間化合物單晶等。 |
耐高溫、耐高壓、高真空、 高透光率、拆裝簡便的樣品腔 | 由德國弗勞恩霍夫應(yīng)用光 和精密工程研究所優(yōu)化設(shè)計的高反射率鏡面, 鏡體位置可由高精度步進馬達控制調(diào)節(jié) |
光闌式光強控制器 更方便地調(diào)節(jié)熔區(qū)溫度,延長燈泡壽命 | 仿真化觸屏控制軟件 界面友好,操作簡單 |
熔區(qū)測溫選件**測溫技術(shù) 可實時監(jiān)測加熱區(qū)溫度 | 多路獨立氣路控制選件 可控制N2、O2、Ar、空氣等的流量和壓力, 并可對氣體進行比例混合與熔區(qū)進行反應(yīng) |
氣體除雜選件 可使高壓氬氣中的氧含量達到10-12ppm | 退火選件 可對離開熔區(qū)的單晶棒提供 高達1100℃退火溫度和高壓氧環(huán)境 |
SciDre單晶爐特點
● 采用垂直式光路設(shè)計
● 采用高照度短弧氙燈,多種功率規(guī)格可選
● 熔區(qū)溫度:>3000℃
● 熔區(qū)壓力:10bar/50bar/100bar/150bar/300bar等多種規(guī)格可選
● 氧氣/氬氣/氮氣/空氣/混合氣等多種氣路可選
● 采用光柵控制技術(shù),加熱功率從0-100% 連續(xù)可調(diào)
● 樣品腔可實現(xiàn)低至10-5mbar真空環(huán)境
● 豐富的可升級選件
SciDre單晶爐技術(shù)參數(shù)
熔區(qū)溫度:高達2000 - 3000℃以上
熔區(qū)壓力:高至10、50、100、150、300 bar可選
熔區(qū)真空:1*10-2 mbar或 1*10-5 mbar可選
熔區(qū)氣氛:Ar、O2、N2等可選
氣體流量:0.25 – 1 L/min流量可控
氙燈功率:3kW至15kW可選
料棒臺尺寸:6.8mm或9.8mm可選
拉伸速率:0.1-50mm/h
調(diào)節(jié)速率:0.6 mm/s
拉伸尺寸:130mm,150mm,195mm可選
旋轉(zhuǎn)速率:0-70rpm
用電功率:400V三相 63A 50Hz
主機尺寸:330cm*163cm*92cm (不同規(guī)格略有差異)
發(fā)表文章
1. (2020)Single crystal growth and luminescent properties of YSH:Eu scintillator by optical floating zone method Chemical Physics Letters, Volume 738, 136916
2. (2020)Anisotropic character of the metal-to-metal transition in Pr4Ni3O10 Phys. Rev. B 101, 104104
3. (2020)Synthesis of a New Ruthenate Ba26Ru12O57 Crystals 2020, 10(5), 355
4. (2020)Synthesis and characterization of bulk Nd1- SrxNiO2 and Nd1- xSrxNiO3 Phys. Rev. Materials 4, 084409
5. (2020)Magnetic phase diagram and magnetoelastic coupling of NiTiO3 Phys. Rev. B 101, 195122
6. (2019)High pO2 Floating Zone Crystal Growth of the Perovskite Nickelate PrNiO3 Crystals 2019, 9(7), 324
7. (2019)Magnetic properties of high-pressure optical floating-zone grown LaNiO3 single crystals Journal of Crystal Growth Volume 524, 15 October 2019, 125157
8. (2019)Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals RAlGe (R = Pr, Ce) Phys. Rev. Materials 3, 024204
9. (2019)Pushing boundaries: High pressure, supercritical optical floating zone materials discovery Journal of Solid State Chemistry 270 (2019): 705-709
10. (2018). Antiferromagnetic correlations in the metallic strongly correlated transition metal oxide LaNiO3. Nature Communications 9:43
11. (2017). Single-crystal growth and physical properties of 50% electron-doped rhodate Sr 1.5 La 0.5 RhO 4 Physical Review Materials 1(4), 044005
12. (2017). Single crystal growth and structural evolution across the 1st order valence transition in (Pr1-yYy) 1- xCaxCoO3-δJournal of Solid State Chemistry 254, 69-74
13. (2017). Large orbital polarization in a metallic square-planar nickelate. Nature Physics 13, 864–869
14. (2017). High-Pressure Floating-Zone Growth of Perovskite Nickelate LaNiO3 Single Crystals. Crystal Growth & Design 17(5), 2730-2735.
15. (2017). High-pressure optical floating-zone growth of Li(Mn,F(xiàn)e)PO4 single crystals. Journal of Crystal Growth, 462, 50-59.
16. (2016). Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate. Nature 540, 559–562.
17. (2016). Stacked charge stripes in quasi-2D trilayer nickelate La4Ni3O8. PNAS 2016 113 (32) 8945-8950.
18. (2016). Single Crystal Growth of Pure Co3+ Oxidation State Material LaSrCoO4. Crystals, 6(8), 98.
19. (2015). Floating zone growth of Ba-substituted ruthenate Sr2?xBaxRuO4. Journal of Crystal Growth, 427, 94-98.
20. (2015). High pressure floating zone growth and structural properties of ferrimagnetic quantum paraelectric BaFe12O19. APL Materials 3, 062512.
21. (2015). Impact of local order and stoichiometry on the ultrafast magnetization dynamics of Heusler compounds. Journal of Physics D: Applied Physics, 48(16), 164016.
22. (2014). Brownmillerite Ca2Co2O5: Synthesis, Stability, and Re-entrant Single Crystal to Single Crystal Structural Transitions. Chemistry of Materials, 26(24), 7172-7182.
23. (2014). Low-temperature properties of single-crystal CrB2. Physical Review B, 90(6), 064414.(Also on archiv.org.)
24. (2014). Effect of annealing on spinodally decomposed Co2CrAl grown via floating zone technique. Journal of Crystal Growth, 401, 617-621.(Also on arxiv.org.)
25. (2013). de Haas–van Alphen effect and Fermi surface properties of single-crystal CrB2. Physical Review B, 88(15), 155138. (Also on arxiv.org.)
26. (2013). Phase Dynamics and Growth of Co2Cr1–xFexAl Heusler Compounds: A Key to Understand Their Anomalous Physical Properties. Crystal Growth & Design, 13(9), 3925-3934.
27. (2011). Exploring the details of the martensite–austenite phase transition of the shape memory Heusler compound Mn2NiGa by hard x-ray photoelectron spectroscopy, magnetic and transport measurements. Applied Physics Letters, 98(25), 252501.
28. (2011). Challenges in the crystal growth of Li2CuO2 and LiMnPO4. Journal of Crystal Growth, 318(1), 995-999.
29. (2011). Self-flux growth of large EuCu 2 Si 2 single crystals. Journal of Crystal Growth, 318(1), 1043-1047.
30. (2010). Influence of heat distribution and zone shape in the floating zone growt·h of selected oxide compounds. Journal of materials science, 45(8), 2223-2227.
31. (2009). Highly ordered, half-metallic Co2FeSi single crystals. Applied Physics Letters, 95(16), 161903.
32. (2009). Single-crystal growth of LiMnPO4 by the floating-zone method. Journal of Crystal Growth, 311(5), 1273-1277(Also on uni-heidelberg.de.)
33. (2008). Crystal growth of rare earth-transition metal borocarbides and silicides. Journal of Crystal Growth, 310(7), 2268-2276.
用戶單位
中國科學(xué)院物理研究所
中國科學(xué)院固體物理研究所
北京師范大學(xué)
中山大學(xué)
南昌大學(xué)
上海大學(xué)
暫無數(shù)據(jù)!