看了差示掃描量熱儀DSC 214 Polyma的用戶又看了
虛擬號將在 180 秒后失效
使用微信掃碼撥號
操作簡單、功能強大、測量精確、日常使用方便 — 這些都是創(chuàng)新型 DSC 214 Polyma 的優(yōu)異特性。這款儀器設計獨特,無論用戶是初學者還是經驗豐富的專業(yè)人士,都能滿足其需求。尤其是開發(fā)了兩款新軟件:自動分析與曲線識別,樹立了 DSC 新的標準,這些將引發(fā) DSC 分析的**。
聚合物表征的新型整體解決方案
樣品制備****的簡單
自動化測量及分析
**臺可快速冷卻的熱流型 DSCDSC 214 Polyma 配備熱質量非常低的橢圓形爐體(Arena®爐體),**升溫/冷卻速率可達 500K/min,這是熱流型 DSC ****的。相對于通常采用的 10K 或 20K/min 的降溫速率,可以實現更接近于實際加工的溫度程序。 |
開創(chuàng)性傳感器技術新型**技術的 Corona®傳感器中間為鉻鎳合金,外環(huán)為康銅合金。兩種材料通過擴散焊接連接。Corona®傳感器具有極高的靈敏度和重復性,加上新型**技術的 Concavus®坩堝,成就了儀器**的重現性。 |
新型鋁坩堝與獨特的包裝盒Convavus®坩堝是隨 DSC 214 一起推出的全新設計的鋁坩堝。坩堝底部增加了特殊的加強環(huán),可保證坩堝底面和 DSC 傳感器底面穩(wěn)定、良好的熱接觸,顯著提高了測量結果的重復性。Concavus®坩堝的**技術設計,能提高所有 DSC 測量的重復性,所以適用于耐馳及市場上所有熱流型 DSC。 專為 Concavus 坩堝設計的 3in1 Box 包裝盒能為坩堝的運輸與儲存提供全面的保護,且防止由靜電導致的坩堝之間的粘連。每個盒子都配有樣品標簽卡,方便樣品及測量結果的存檔,這尤其適用于需要長期保存樣品,定期復測的應用場合。 |
三位一體通過熱質量非常低的 Arena®爐體、堅固的高靈敏度的 Corona®傳感器、與設計獨特的 Concavus®坩堝三者的結合,使得 DSC 214 Polyma 具有**的性能表現。 |
溫度范圍:-170°C ... 600
溫度重復性:± 0.01°C(標準金屬)
**升溫速率:500 K/min
**降溫速率:500 K/min
In 響應比率:> 100 mW/K
DSC 量程:± 750 mW
熱焓靈敏度:0.1 μW
熱焓精度:±0.05%(標準金屬)
溫度/熱焓校正:多點標樣,非線性校正技術
基線漂移:10 μW (-50 ... 300°C)
比熱測量:選件
可選冷卻設備:壓縮空氣、機械、液氮
(可以單獨或同時連接多種冷卻裝置,通過軟件切換)
氣氛:靜態(tài)及動態(tài),惰性、氧化、還原
氣體控制:3 路獨立的氣流控制裝置,軟件自動切換
3路獨立的質量流量控制計,軟件自動切換(選件)
自動進樣器:選件,可容納 20 位,樣品和參比位任意指定
溫度調制 DSC:選件,配備** FRC 校正技術
軟件:Proteus®,標配
- Smart Mode(智能模式)
- Expert Mode (專家模式)
- AutoCalibration (自動校正)
- AutoEvaluation (自動分析)
- Identify (自動檢索)
- Tau-R (高級DSC校正)
- 氧化誘導期 (O.I.T.)
- AutoCooling(自動冷卻)
- Predefined methods(預設測試方法)
操作系統(tǒng):軟件可在 Windows7、Windows8.1 和 Windows10 操作系統(tǒng)下運行
支持 PC 和平板電腦等移動設備
高級軟件:選件,包括熱動力學、峰分離、純度、熱模擬等
Proteus®7.0:省時省力的軟件簡化的程序設置用戶界面(SmartMode),一鍵自動曲線分析(AutoEvaluation),和未知曲線的識別功能(Identify)是軟件的關鍵功能,能夠為其他任務大大節(jié)省時間。即使沒有經驗的使用者也能夠快速安全的得到有意義的結果。 當用戶較好地掌握了 DSC 操作技能之后,可以利用專家模式使用 Proteus®軟件的所有功能。對于使用 AutoEvaluation 得到的結果也能夠進行手動處理和重新計算,這使得經驗豐富的使用者能夠全面掌握分析過程。 Proteus®軟件的 7.0 版本是特別針對 DSC 214 Polyma,能夠與 WindowsXP, Windows 7 或 Windows 8.1 兼容。軟件與儀器配套使用,并且能夠在另外的電腦上安裝使用。 |
智能模式(SmartMode)— 通往高效的捷徑隨著 DSC 214 Polyma 的推出,新型的智能模式軟件界面也隨著誕生。 由于其直觀的界面具有清晰的結構、導航的一致性和用戶友好性,即使沒有任何經驗的使用者也能很快的找到使用方法。 在 Wizards 的菜單目錄下,有一系列常規(guī)的預定義測試方法。這些方法只需要極少的輸入就能夠實現一鍵測試。這些方法還能夠互相組合。預定義方法包含了 NETZSCH 聚合物物性海報中的所有材料對應的測試方法,能夠立即開始測試??蛻粼O定方法則可以讓用戶保存之前的測試方法以便下一次測試使用。 |
自動分析(AutoEvaluation)— 完全自動的分析方法自動分析(AutoEvaluation)是一種全新開發(fā)的軟件功能,能夠一鍵自動分析熱塑性聚合物、橡膠和樹脂等未知材料的曲線。自動分析功能首先分析的是 DSC 曲線上的關鍵效應如玻璃化轉變、熔融峰,然后分析的是其他熱效應如重結晶。通過軟件的智能計算,即能使用戶獲得本來需要專業(yè)知識才能獲取的信息,這在熱分析發(fā)展史上,尚屬首創(chuàng)。 |
曲線識別(Identify) — 使每一個用戶都成為專家曲線識別(Identify)是一個很特別的工具,只需輕輕一擊就能夠自動識別解析曲線。軟件的這部分功能是為了進行材料識別和質量控制而設計的。給定材料的曲線特性和軟件集成的數據庫相比,能夠自動識別材料的類型。在 DSC 技術領域中,數據庫比對是****的。識別功能的數據庫中不僅包含了 NETZSCH 的典型聚合物曲線譜庫,還能通過添加用戶自己的聚合物或復合物的曲線進行擴展??梢允褂糜脩糇远x的質量標準進行產品類別設定??梢詫⒛承┡蔚臉悠放c另一些批次進行客觀比較 — 這在質量控制和失效分析領域中尚屬首創(chuàng)。 |
自動校正(AutoCalibration)— 必要步驟的簡化DSC 儀器校正是 DSC 測試正確的先決條件。這能確保儀器在預設的參數內進行測試。但是校正程序本身應該簡單快速,理想情況是能夠一次性完成。解決的方法是自動校正。這種特殊的軟件功能為普通的標準測試提供了預定義的校正方法,并對校正測試進行全自動分析,如分析熔融峰值,計算校正曲線和檢查其有效性。因此自動校正簡化了耗時的常規(guī)任務。 |
圖中顯示了看似相同的兩種顆粒的 DSC 曲線,樣品為 PA66,分別在不同時間交付(以 20K/min 的速率降溫后二次升溫)。藍色曲線(舊樣)上在 63°C 出現玻璃化轉變,263°C 出現熔融峰,均為 PA66 的典型表現。在新料(紅色曲線)上則出現了雙峰,峰值溫度為 206°C 和 244°C。這表明新料中可能存在與 PA66 共混的第二種聚合物。
樣品質量:11.96 mg(藍色)和11.85mg(紅色);在動態(tài) N2 氣氛下以 20K/min 降溫后再以 20K/min 升溫至 330°C。
OIT 測試(氧化誘導時間)是用于評價聚合物特別是聚烯烴耐氧化性的常用測試方法。在這個例子中,兩個 PP 樣品在動態(tài)氮氣氣氛下加熱到 200°C。在加熱過程中檢測到的吸熱峰對應于聚丙烯的熔融。在 200°C 恒溫 3 分鐘,將氣體切換至空氣。其后出現的放熱效應為聚合物的氧化分解。此例中,樣品A(OIT 6.6分鐘)比樣品B(OIT 11.6分鐘)更早的發(fā)生了氧化反應。
樣品質量:9.48mg(樣品A)和 9.55 mg(樣品B);在 N2 氣氛(50 ml/min)下以 20K/min 加熱至 200°C,在 N2 下恒溫 3min;在空氣下(50ml/min)恒溫直至分解。
右圖所示為 SBR 橡膠樣品在 -100℃ 到 220℃ 間的兩次升溫曲線,兩次升溫過程中都測得 -47℃(中點)的玻璃化轉變,且 0℃ 到 70℃ 間都有個較寬的吸熱峰,猜測為添加劑的熔融。僅在一次升溫過程中檢測到峰值為 169℃ 的放熱峰,為彈性體后固化過程。
下圖為熱塑性聚氨酯(TPU)樣品的測試結果。一次升溫過程中,玻璃化轉變出現在 -42°C,為樣品中鏈段的軟化過程。一次升溫過程中在 100°C 到 210°C 有兩個吸熱峰,二次升溫過程中只檢測到其中一個由熔融(熱塑性組分)引起的可逆轉變(7.40J/g),不可逆轉變的峰(207°C)為易揮發(fā)組分或添加劑的揮發(fā),這種揮發(fā)導致玻璃化轉變溫度升高,二次升溫過程中檢測到玻璃化轉變溫度為 -28°C。
樣品質量:10.47mg,N2 氣氛,以 10K/min 的速率從 -100°C 升溫至 250°C,兩次升溫
DSC 214 Polyma 配合 IC70 機械制冷,測試 PA66 GF30(30%wt 玻璃纖維)的等溫結晶過程。較低的爐體熱質量,使得爐腔內部可在幾秒內實現 60℃ 的降溫。在這個前提下,才有可能將 PA66 的結晶過程(17min 附近的結晶峰)和溫度調整引起的曲線波動(15.4min 至 16min 之間的曲線波動)分開。同時從溫度曲線可見,在急速降溫時溫度過沖極小,說明 DSC214 Polyma 具有杰出的冷卻性能。
本例中研究的是兩種用于注塑成型的聚丙烯回收料,材料 A 在注塑過程結束的時候已完全結晶,而材料 B 仍處于熔融狀態(tài),通過 DSC 測試,可以分析兩種材料結晶行為存在差異的原因。
降溫過程中的放熱峰為高聚物的結晶過程?;厥樟?A(藍色曲線,結晶起始點 126℃)的結晶起始溫度高于回收料 B(紅色曲線,結晶起始點 122℃)。
除了峰值為 121℃(藍色曲線)和 118℃(紅色曲線)的主峰外,還有 97℃ 的峰(藍色曲線)和 107℃ 的肩峰(紅色曲線),小的吸熱峰說明材料中還存在另外一種組分,材料 A 中的這一組分導致了較早的成核過程。
PP 再生料的不同結晶行為
樣品質量:約 13mg,N2 氣氛,升溫至 200℃ 后以 10K/min 速率冷卻
通過二次升溫曲線可做進一步驗證,除了 165℃ 和 163℃ 的吸熱峰(PP材料典型的熔融峰),藍色曲線在 110℃ 和 124℃ 還有兩個吸熱峰,說明材料 A 中還含有 LDPE、LLDPE 或 HDPE(熔融溫度隨密度增大而升高)等額外的組分。相反,材料 B 中僅在 126℃ 有一個小的吸熱峰。
混入了不同 PE 雜質的 PP 再生料的熔融
樣品質量:約 13mg,N2 氣氛,以 10K/min 速率冷卻后再以 10K/min 升溫至 200℃
半晶態(tài)高聚物(如 PBT)的結晶行為隨冷卻歷史不同而變化,這對于預估實際生產過程中的開模、取出成品部件的溫度非常重要。
本例顯示的是含 30%wt 玻璃纖維的PBT材料,以多種不同的降溫速率(20K/min到200K/min)冷卻后的升溫曲線。
升溫過程統(tǒng)一采用 50K/min 的升溫速率,以 20K/min 速率冷卻后的升溫曲線(紅色)可以明顯的看到 PBT 材料典型的β相肩峰;以 50K/min 速率冷卻后的曲線(藍色)上β相吸熱峰的溫度降低,與主峰分的更開;而以 100K/min 和 200K/min 速率冷卻后的曲線(分別對應綠色和黑色)上只看到放熱的冷結晶過程,沒有β相的吸熱峰。
以不同速率冷卻后 PBT GF30 的升溫曲線
樣品質量:10.1mg,升溫速率:50K/min
同時,下圖展示了不同降溫速率對 PBT 結晶行為的影響。以 20K/min(紅色)的速率降溫時,PBT 結晶起始于 194℃,結晶峰值溫度為 188℃。以 200K/min(黑色)的速率降溫時,結晶起始溫度為 171℃,峰值溫度為 156℃,120℃ 時曲線出現拐折,但此時結晶放熱過程仍未完成。
PBT 在不同的冷卻速率下的降溫曲線
樣品質量:10.1mg,N 2 氣氛,降溫速率 20K/min、50K/min、100K/min 和 200K/min
利用耐馳動力學軟件建立化學反應過程的動力學模型,可以在用戶定義的溫度條件下對化學反應體系的行為進行預測,以進行工藝優(yōu)化。
本例研究雙組分環(huán)氧粘合劑的固化過程,將三個樣品以不同速率(2K/min、5K/min 和 10K/min)升溫至 200℃,固化反應的峰值溫度隨升溫速率提高而升高。單步反應的動力學模型與試驗曲線基本重合,相關系數高于 0.999。因此,此模型可用于對等溫和用戶自定義的溫度程序下的反應進行預測。
單步反應的實測曲線(虛線)與理論曲線(實線)對比
下圖顯示的是不同溫度下恒溫時樣品的固化度隨時間的變化,由軟件基于動力學模型計算得到。在 120℃ 下恒溫 3min,樣品的固化度即達 95%,而在 110℃ 下達到同等固化程度需要恒溫 5min 以上。
不同溫度下等溫的固化反應預測
DSC 214 - 相關附件DSC 214 Polyma 能夠根據客戶的要求配置多種附件進行系統(tǒng)優(yōu)化和擴展。 各種冷卻系統(tǒng)都能夠對爐體進行冷卻,無論是通過空氣壓縮機冷卻至室溫還是利用液氮系統(tǒng)將溫度降至 -170°C。低成本的機械制冷是除了液氮之外的另一個選擇,能夠在 -40°C 至 600°C(IC40)或 -70°C 至 600°C(IC70)溫度范圍內使用。 |
NETZSCH 提供不同材質的坩堝(鋁,銅,銀,高壓不銹鋼等等)以適用于幾乎所有應用和材料??筛鼡Q壓頭的壓機適用于冷焊的鋁坩堝和中壓不銹鋼坩堝。 為日常應用提供的能夠放置 20 個樣品的自動進樣器(ASC)也適用于不同的坩堝類型。 |
優(yōu)化樣品制備利用 NETZSCH 的樣品制備套件,即使象玻纖增強的小顆?;蛐K狀材料都能很快地制備好。 |
DSC 坩堝必須由高導熱的材料制成,這能夠保證樣品和坩堝以及傳感器之間具有良好的熱傳導以及較低的溫度梯度。
坩堝必須由惰性材料制成,以確保樣品在設定的溫度程序中不會和坩堝反應。除非要求坩堝對樣品具有催化作用(比如,氧化誘導期測試中使用到銅坩堝)。
坩堝在設定的溫度程序中不能存在任何的相變及其他反應,熔點或軟化溫度都必須足夠高于**的應用溫度。
材質 | **溫度 | 組成 | 尺寸/容量 | 備注 |
Al(99.5) | **600°C | Concavus坩堝+蓋子 | 5mm,30/40ul | 96套Concavus坩堝+蓋子,3in1Box,可壓制 |
Al(99.5) | **600°C | 坩堝+蓋子 | 6mm,25/40ul* | 100套或100套,可壓制** |
Al(99.5) | **600°C | 坩堝+蓋子(激光預穿孔,孔徑50um) | 6mm,40ul | 100套或500套,可壓制** |
Al(99.5) | **600°C | 坩堝 | 6.7mm,85ul | 100片 |
Al(99.5) | **600°C | 坩堝蓋 | 100片,配套 85ul 坩堝 |
* 坩堝容積:蓋子正壓時為 40ul,反壓則為 25ul。
** 使用同一臺壓機可以密封所有標準型號的 Al 坩堝。
暫無數據!