參考價(jià)格
面議型號(hào)
品牌
產(chǎn)地
芬蘭樣本
暫無看了硒化鋅分光鏡的用戶又看了
虛擬號(hào)將在 180 秒后失效
使用微信掃碼撥號(hào)
硒化鋅分光鏡Zinc Selenide Beamsplitters
ZnSe 在紅外元器件窗片透鏡以及光譜分析ATR 棱鏡領(lǐng)域有著廣泛的應(yīng)用。硒化鋅(Zinc Selenide)對于CO2激光器的元器件也是一種良好的選擇。在二氧化碳激光器工作的波段10.6 microns附近有著良好的透射率。硒化鋅材料是一種黃色透明的多晶材料, 結(jié)晶顆粒大小約為70μm, 透光范圍0.5-15μm。由化學(xué)氣相沉積(CVD)方法合成的基本不存在雜質(zhì)吸收, 散射損失極低。由于對10.6μm波長光的吸收很小, 因此成為制作高功率CO2激光器系統(tǒng)中光學(xué)器件的**材料。 此外在其整個(gè)透光波段內(nèi), 也是在不同光學(xué)系統(tǒng)中所普遍使用的材料。
硒化鋅材料對熱沖擊具有很高的承受能力, 使它成為高功率CO2激光器系統(tǒng)中的**光學(xué)材料。硬度只是多光譜級ZnS的2/3, 材質(zhì)較軟易產(chǎn)生劃痕, 而且材料折射率較大, 所以需要在其表面鍍制高硬度減反射膜來加以保護(hù)并獲得較高的透過率。在其常用光譜范圍內(nèi), 散射很低。在用做高功率激光器件時(shí), 需要嚴(yán)格控制材料的體吸收和內(nèi)部結(jié)構(gòu)缺陷, 并采用*小破壞程度的拋光技術(shù)和**光學(xué)質(zhì)量的鍍膜工藝。
廣泛應(yīng)用于激光,醫(yī)學(xué),天文學(xué)和紅外夜視等領(lǐng)域中。
訂購型號(hào):MPZNSEBS50.8-50.8
參數(shù):
IR Polished Zinc Selenide (ZnSe) beamsplitter
50.8 x 50.8 x 3mm 45° beamsplitter.
50% transmission / 50% reflection @45° for 2-14μm
參數(shù)詳細(xì)信息:
透射波段范圍 : | 0.6 to 21.0 um |
折射率: | 2.4028 at 10.6 um |
反射損耗: | 29.1% at 10.6 um (2 surfaces) |
吸收系數(shù): | 0.0005 cm-1at 10.6 um |
吸收峰: | 45.7 um |
dn/dT : | +61 x 10-6/℃ at 10.6 um at 298K |
dn/du = 0 : | 5.5 um |
密度: | 5.27 g/cc |
熔點(diǎn): | 1525℃ (see notes below) |
導(dǎo)熱系數(shù): | 18 W m-1K-1at 298K |
熱膨脹: | 7.1 x 10-6/℃at 273K |
硬度 : | Knoop 120 with 50g indenter |
比熱容量 : | 339 J Kg-1聽K-1 |
Dielectric Constant : | n/a |
Youngs Modulus (E) : | 67.2 GPa |
Shear Modulus (G) : | n/a |
Bulk Modulus (K) : | 40 GPa |
彈性系數(shù) : | Not Available |
Apparent Elastic Limit : | 55.1 MPa (8000 psi) |
泊松比 : | 0.28 |
Solubility : | 0.001g/100g water |
Molecular Weight : | 144.33 |
Class/Structure : | HIP polycrystalline cubic, ZnS, F43m |
No = Ordinary Ray
μm | No | μm | No | μm | No |
0.54 | 2.6754 | 0.58 | 2.6312 | 0.62 | 2.5994 |
0.66 | 2.5755 | 0.7 | 2.5568 | 0.74 | 2.5418 |
0.78 | 2.5295 | 0.82 | 2.5193 | 0.86 | 2.5107 |
0.90 | 2.5034 | 0.94 | 2.4971 | 0.98 | 2.4916 |
1.0 | 2.4892 | 1.4 | 2.4609 | 1.8 | 2.4496 |
2.2 | 2.4437 | 2.6 | 2.4401 | 3.0 | 2.4376 |
3.4 | 2.4356 | 3.8 | 2.4339 | 4.2 | 2.4324 |
4.6 | 2.4309 | 5.0 | 2.4295 | 5.4 | 2.4281 |
5.8 | 2.4266 | 6.2 | 2.4251 | 6.6 | 2.4235 |
7.0 | 2.4218 | 7.4 | 2.4201 | 7.8 | 2.4183 |
8.2 | 2.4163 | 8.6 | 2.4143 | 9.0 | 2.4122 |
9.4 | 2.4100 | 9.8 | 2.4077 | 10.2 | 2.4053 |
10.6 | 2.4028 | 11.0 | 2.4001 | 11.4 | 2.3974 |
11.8 | 2.3945 | 12.2 | 2.3915 | 12.6 | 2.3883 |
13.0 | 2.3850 | 13.4 | 2.3816 | 13.8 | 2.3781 |
14.2 | 2.3744 | 14.6 | 2.3705 | 15.0 | 2.3665 |
15.4 | 2.3623 | 15.8 | 2.3579 | 16.2 | 2.3534 |
16.6 | 2.3487 | 17.0 | 2.3438 | 17.4 | 2.3387 |
17.8 | 2.3333 | 18.2 | 2.3278 |
關(guān)于晶體切割:
During Chemical Vapour Deposition the small crystallite grains align with the direction of growth, and are
normal to the thickness of the sheet produced. For windows of normal thickness and aspect ratios the alignmentof the grain therefore is rarely a problem as they are cut from the grown sheet such that within an optical windowthe grains align perpendicular to the surfaces. This is optimum orientation for lowest internal absorption andscatter.
With prisms, the cutting direction requires more consideration. It isrecommended that the thickness of the stripmaterial corresponds to the apex
height of the prism. This ensures optimum crystallite orientation for most usual
prism applications.
For typical 45° prisms the most obvious use of material is shown in (A) but it
should be noted that this is not the optimum orientation.
The best choice is (B) and it also permitsa higher limit on prism size orconverselyallows thinner stock to be used. There iswaste at the ends of the strip but this issmall and so it may not be quite aseconomic as (A).
Cutting in direction (C) where the entire light beam runs at 90° to the grain
structure should be avoided completely if at all possible.Note that maximum available thickness of ZnSe and ZnS (FLIR) is approximately 60mm. Maximum availablethickness of ZnS Cleartran is approximately 30mm
暫無數(shù)據(jù)!