參考價(jià)格
面議型號(hào)
品牌
產(chǎn)地
德國(guó)樣本
暫無(wú)看了德國(guó)HYDRO-BIOS公司—多通道水樣采集器的用戶又看了
虛擬號(hào)將在 180 秒后失效
使用微信掃碼撥號(hào)
德國(guó)HYDRO-BIOS公司—多通道水樣采集器 Multi Water Sampler
MWS多通道水樣采集器用于在水體中進(jìn)行水樣分層采集工作。它由一組堅(jiān)固的、裝有12/24個(gè)支架的不銹鋼陣列組成,支架上可以安裝容量為1.7L或10L的采樣瓶,用來(lái)在一次操作中完成12/24個(gè)不同深度水樣的采集工作。多通道水樣采集器裝有一個(gè)馬達(dá)驅(qū)動(dòng)的自動(dòng)釋放裝置,上面集成一個(gè)壓力傳感器,傳感器的測(cè)量范圍可根據(jù)用戶的工作要求進(jìn)行選擇。工作水深:3000米,6000米,11000米。整套系統(tǒng)工作時(shí)電量消耗極少,并且可以在溫度為-40℃~+85℃的極端環(huán)境中正常工作。
MWS多通道水樣采集器可以由甲板控制單元上的控制按鈕控制,進(jìn)行在線實(shí)時(shí)采樣;也可按照預(yù)先設(shè)定的采樣深度間隔進(jìn)行離線自容式采樣。
多通道水樣采集器控制單元
OceanLab數(shù)據(jù)處理軟件甲板單元
選配件:CT-組件,完全整合在多通道水樣采集器的驅(qū)動(dòng)單元上,由一個(gè)電導(dǎo)率傳感器、一個(gè)溫度傳感器和一個(gè)電路板組成。各種參數(shù)的傳感器,如溫度、鹽度、葉綠素、濁度等容量16M為數(shù)據(jù)存儲(chǔ)器技術(shù)參數(shù):
尺寸 | MWS12:直徑140cm,高度160cm;MWS24:直徑180cm,高度160cm |
空重 | MWS12:約100kg(不帶采樣瓶);MWS24:約200kg(不帶采樣瓶) |
**操作水深 | 標(biāo)準(zhǔn)配置:3000米;可選配置:6000米,11000米 |
陣列 | 不銹鋼材質(zhì) |
馬達(dá)單元 | 由鈦制成,電池供電(3×DL123A/3V) |
甲板控制單元 | 金屬艙室;帶一個(gè)控制采樣器開(kāi)關(guān)的按鈕;顯示采樣瓶序號(hào)、壓力和電池狀態(tài)帶發(fā)光二極管背景燈的液晶顯示屏;與PC機(jī)的接口為RS232;由85-260V交流電或電池 |
壓力傳感器 | 0-3000dbar±0.1%f.s.(標(biāo)準(zhǔn));0-6000dbar±0.1%f.s.(可選);0-11000dbar±0.1%f.s.(可選); |
獨(dú)特之處:√操作簡(jiǎn)單 √雙向通信 √工作水深:3000米,6000米,11000米 √長(zhǎng)距離(>10000米)遙感數(shù)據(jù)傳輸 √電量消耗極低 √水下單元有電池操作,電纜中**電壓僅有5V
√電子單元可在溫度為-40℃~+85℃的環(huán)境中正常工作 √獲CE國(guó)際質(zhì)量管理標(biāo)準(zhǔn)體系認(rèn)證,高品質(zhì)保證
MWS多通道水樣采集器訂購(gòu)信息:436 912 MWS 12多通道水樣采集器帶微處理器和外置電池組的馬達(dá)驅(qū)動(dòng)單元;集成壓力傳感器;通過(guò)PC機(jī)控制的可編程式深度依賴性采樣間隔; 16兆數(shù)據(jù)存儲(chǔ)器;帶甲板控制單元,85-260V交流電或電池供電;
可安裝采樣瓶:12只單獨(dú)訂購(gòu))
436 924 MWS 24多通道水樣采集器帶微處理器和外置電池組的馬達(dá)驅(qū)動(dòng)單元;集成壓力傳感器;通過(guò)PC機(jī)控制的可編程式深度依賴性采樣間隔; 16兆數(shù)據(jù)存儲(chǔ)器;帶甲板控制單元,85-260V交流電或電池供電;
可安裝采樣瓶:24只,1.7~10L(注意:采樣瓶需單獨(dú)訂購(gòu))
HYDRO-BIOS多通道水樣采集器代表文獻(xiàn):
1.Gradinger, Jiirgen Lenz,1989.Picocyanobacteria in the high Arctic.Marine Ecology. Progress series.52:99-101.
2.R. R. Gradinger, M. E. M. Baumann,1991.Distribution of phytoplankton communities in relation to the large-scale hydrographical regime in the Fram Strait.Marine Biology.111(2),311-321.
3.R. J. Gowen, B.M. Stewart, D.K. Mills and P. Elliott,1994.Regional differences in stratification and its effect on phytoplankton production and biomass in the northwestern Irish Sea.Journal of Plankton Research.17(4):753-769.
4.R.J. Gowen, G. McCullough, M. Dickey-Collas and G.S. Kleppel,1997.Copepod abundance in the western Irish Sea: relationship to physical regime, phytoplankton production and standing stock.Journal of Plankton Research.20(2):315-330.
5.K. Richardson, S.H. Jónasdóttir, S.J. Hay, A. Christoffersen,1999.Calanus finmarchicus egg production and food availability in the Faroe–Shetland Channel and northern North Sea: October–March.Fisheries Oceanography.8(1):153–162.
6.M. Trimmer, R. J. Gowen, B. M. Stewart, D. B. Nedwell,1999.The spring bloom and its impact on benthic mineralisation rates in western Irish Sea sediments.Marine Ecology Progress series.185:37-46.
7.Harri T. Kankaanp??, Vesa O. Sipi?, Jorma S. Kuparinen, Jennifer L. Ott, and Wayne W. Carmichael ,1999.Nodularin analyses and toxicity of a Nodularia spumigena (Nostocales, Cyanobacteria) water-bloom in the western Gulf of Finland, Baltic Sea, in August 1999.Phycologia.40(3):268-274.
8.Andrea M. Sass, Henrik Sass, Marco J. L. Coolen, Heribert Cypionka, and J?rg Overmann,2001.Microbial Communities in the Chemocline of a Hypersaline Deep-Sea Basin (Urania Basin, Mediterranean Sea).Applied and Envioronmental Mcrobiology.67(12):5392-5402.
9.Victor W Truesdale, Günther Nausch, Alex Baker,2001.The distribution of iodine in the Baltic Sea during summer.Marine Chemistry.74(2–3):87–98.
10.Ann K. Manske, Jens Glaeser, Marcel M. M. Kuypers and J?rg Overmann,2005.Physiology and Phylogeny of Green Sulfur Bacteria Forming a Monospecific Phototrophic Assemblage at a Depth of 100 Meters in the Black Sea.Applied and Envioronmental Mcrobiology.71(12):8049-8060.
11.Maik Inthorn, Michiel Rutgers van der Loeff, Matthias Zabel,2006.A study of particle exchange at the sediment–water interface in the Benguela upwelling area based on 234Th/238U disequilibrium.Deep Sea Research Part I: Oceanographic Research Papers.53(11):1742–1761.
12.Tim J. Waite, Victor W. Truesdale, Jon Olafsson,2006.The distribution of dissolved inorganic iodine in the seas around Iceland.Marine Chemistry.101(1–2):54–67.
13.MAJANEVA Markus, AUTIO Riitta, HUTTUNEN Maija, KUOSA Harri, KUPARINEN Jorma,2009.Phytoplankton monitoring: the effect of sampling methods used during different stratification and bloom conditions in the Baltic Sea.Boreal environment research.14(2):313-322.
14.Bertics, Victoria J., L?scher, C. R., Salonen, I., Dale, Andy W., Gier, Jessica, Schmitz, R.A. and Treude, Tina,2013.Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernf?rde Bay, Baltic Sea.Biogeosciences(BG).10(3):1243-1258.
15.W. DAVISON,1977.Sampling and handling procedures for the polarographic measurement of oxygen in hypolimnetic waters.Freshwater Biology.7(4):393–401.
16.Austin B. M. Egbore,1978.Seasonal variations in the density of a small West African lake.Hydrobiologia.61(3):195-203.
17.Dr. U. Zaiss, P. Winter, H. Kaltwasser,1982.Microbial methane oxidation in the River Saar.Journal of Basic Microbiology.22(2):139–148.
18.V.F. Samanidou & I.N. Papadoyannis,1992.Study of heavy metal pollution in the waters of Axios and Aliakmon rivers in northern Greece.Journal of Environmental Science and Health . Part A: Environmental Science and Engineering and Toxicology.27(3):587-601.
19.Nilgün Kazanci, Reiner-Hartmut Plasa, Eike Neubert & Afife ?zbirak,1992.On the limnology of Lake K?ycegiz (SW Anatolia).Zoology in the Middle East.6(1):109-126.
20.Eduardo González-Mazo, Jesus María Forja, Abelardo Gómez-Parra ,1998.Fate and Distribution of Linear Alkylbenzene Sulfonates in the Littoral Environment.Environ. Sci. Technol..32(11):1636–1641.
21.V.M León, E González-Mazo, A Gómez-Parra,2000.Handling of marine and estuarine samples for the determination of linear alkylbenzene sulfonates and sulfophenylcarboxylic acids.Journal of Chromatography A.889(1-2):211–219.
22.Claus-Peter Stelzer,2001.RESOURCE LIMITATION AND REPRODUCTIVE EFFORT IN A PLANKTONIC ROTIFER.Ecology.82(9):2521–2533.
23.Udo Noack, Thomas Geffke, Ramani Balasubramanian, Jutta Papenbrock, Mike Braune, Dirk Scheerbaum,2004.Effects of the Herbicide Metazachlor on Phytoplankton and Periphyton Communities in Outdoor Mesocosms.Acta hydrochimica et hydrobiologica.31(6):482–490.
24.L. R. Rodríguez-Gallego, N. Mazzeo, J. Gorga, M. Meerhoff, J. Clemente, C. Kruk, F. Scasso, G. Lacerot, J. García, F. Quintans,2004.The effects of an artificial wetland dominated by free-floating plants on the restoration of a subtropical, hypertrophic lake.Lakes & Reservoirs: Research & Management.9(3-4):203–215.
25.Kristina Samuelsson, Johnny Berglund, and Agneta Andersson,2006.Factors structuring the heterotrophic flagellate and ciliate community along a brackish water primary production gradient.Journal of Plankton Research.28(4):345-359.
26.George Kehayias, Ekaterini Chalkia, Stavroula Chalkia, George Nistikakis, Ierotheos Zacharias, Anastasios Zotos,2008.Zooplankton dynamics in the upstream part of Stratos reservoir (Greece).Biologia.63(5):699-710.
27.MAJANEVA Markus, AUTIO Riitta, HUTTUNEN Maija, KUOSA Harri, KUPARINEN Jorma,2009.Phytoplankton monitoring: the effect of sampling methods used during different stratification and bloom conditions in the Baltic Sea.Boreal environment research.14(2):313-322.
暫無(wú)數(shù)據(jù)!