中國(guó)科學(xué)院物理研究所/北京凝聚態(tài)物理國(guó)家實(shí)驗(yàn)室(籌)先進(jìn)材料與結(jié)構(gòu)分析實(shí)驗(yàn)室A02組(功能晶體研究與應(yīng)用中心)的博士生蘆偉和朱開(kāi)興在研究員郭麗偉和陳小龍的指導(dǎo)下,發(fā)展了基于SiC粉末制備石墨烯/SiC核殼異質(zhì)結(jié)材料(GCSP)的方法(見(jiàn)圖1)。通過(guò)在真空條件下對(duì)微米尺寸的6H-SiC粉末進(jìn)行高溫退火處理,就可在SiC顆粒表面原位生長(zhǎng)出完全包覆SiC顆粒的高質(zhì)量石墨烯(如示意圖1g)。通過(guò)控制生長(zhǎng)工藝條件,就可有效調(diào)控石墨烯的層數(shù)(如圖1h)。相繼在2012年將制備的石墨烯/SiC異質(zhì)結(jié)顆粒復(fù)合材料進(jìn)行了降解有機(jī)污染物的研究,在2014年進(jìn)行了光催化裂解水產(chǎn)氫的實(shí)驗(yàn)研究。研究發(fā)現(xiàn)包覆在SiC顆粒表面的石墨烯層數(shù)為4-9層時(shí),該顆粒展示出最好的降解有機(jī)物能力和劈裂水產(chǎn)氫效率。0.5μm粒徑的石墨烯/SiC復(fù)合顆粒降解有機(jī)物的效果比同樣尺寸的原始SiC顆粒的效果提高7倍;而5 μm粒徑復(fù)合顆粒的產(chǎn)氫效率達(dá)到472μmolg-1h-1,可與一些性能優(yōu)異的納米尺寸催化劑的產(chǎn)氫效果相比擬。突出的降解有機(jī)污染物和劈裂水產(chǎn)氫效率主要源于石墨烯與SiC形成的異質(zhì)結(jié)顆粒具有雙極的載流子轉(zhuǎn)移通道。形成該雙極通道的主要機(jī)制源于在同一個(gè)SiC顆粒表面的不同區(qū)域所生長(zhǎng)石墨烯的費(fèi)米能級(jí)不同,導(dǎo)致SiC與石墨烯的交界處形成不同的能帶彎曲(如圖2所示),從而導(dǎo)致兩種光生載流子的高效分離和轉(zhuǎn)移,促進(jìn)了氧化還原(降解、產(chǎn)氫)反應(yīng)的進(jìn)行。這種雙極載流子轉(zhuǎn)移通道使該復(fù)合顆粒在即使沒(méi)有犧牲劑的情況下也能在紫外光的輻照下產(chǎn)氫。相關(guān)的研究不僅為基于石墨烯的光催化研究提供了一種新思路,還開(kāi)發(fā)出一種極具潛力的綠色、環(huán)保、穩(wěn)定、低成本、高效的無(wú)金屬光催化劑體系。該工作近期發(fā)表在Adv. Mater.上。
上述研究工作得到了國(guó)家自然科學(xué)基金委、科技部“973”項(xiàng)目和中國(guó)科學(xué)院的資助。
圖1. (a-c) 5 μm和 (d-f) 0.5 μm粒徑的原始SiC、GCSP-L(石墨烯1-3層)和GCSP-M(石墨烯4-9層)粉末的SEM形貌;(g)為原始SiC顆粒向GCSP衍化的示意圖;(h) 包覆兩種不同層數(shù)石墨烯/SiC顆粒的Raman譜。
圖2. 石墨烯自摻雜導(dǎo)致形成石墨烯/SiC異質(zhì)結(jié)雙極載流子轉(zhuǎn)移通道的能帶結(jié)構(gòu)示意圖